A Homeomorphism Invariant for Substitution Tiling Spaces

نویسندگان

  • NICHOLAS ORMES
  • CHARLES RADIN
  • LORENZO SADUN
چکیده

Wederive ahomeomorphism invariant for those tiling spaceswhich aremadeby rather general substitution rules on polygonal tiles, including those tilings, like the pinwheel, which contain tiles in in¢nitely manyorientations.The invariant is a quotient of C4 ech cohomology, is easily computed directly from the substitution rule, and distinguishes many examples, including most pinwheel-like tiling spaces.We also introduce a module structure on cohomology which is very convenient as well as of intuitive value. Mathematics Subject Classi¢cations (2000). 37B50, 52C23, 52C20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 A HOMEOMORPHISM INVARIANT FOR SUBSTITUTION TILING SPACES by

We derive a homeomorphism invariant for those tiling spaces which are made by rather general substitution rules on polygonal tiles, including those tilings, like the pinwheel, which contain tiles in infinitely many orientations. The invariant is a quotient of Čech cohomology, is easily computed directly from the substitution rule, and distinguishes many examples, including most pinwheel-like ti...

متن کامل

0 a Homeomorphism Invariant for Substitution Tiling Spaces

We derive a homeomorphism invariant for those tiling spaces which are made by rather general substitution rules on polygonal tiles, including those tilings, like the pinwheel, which contain tiles in infinitely many orientations. The invariant is a quotient of Čech cohomology, is easily computed directly from the substitution rule, and distinguishes many examples, including most pinwheel-like ti...

متن کامل

A Homeomorphism Invariant for Substitution

We derive a homeomorphism invariant for those tiling spaces which are made by rather general substitution rules on polygonal tiles, including those tilings, like the pinwheel, which contain tiles in infinitely many orientations. The invariant is a quotient of Čech cohomology, is easily computed directly from the substitution rule, and distinguishes many examples, including most pinwheel-like ti...

متن کامل

The Branch Locus for One-dimensional Pisot Tiling Spaces

If φ is a Pisot substitution of degree d, then the inflation and substitution homeomorphism Φ on the tiling space TΦ factors via geometric realization onto a d-dimensional solenoid. Under this realization, the collection of Φ-periodic asymptotic tilings corresponds to a finite set that projects onto the branch locus in a d-torus. We prove that if two such tiling spaces are homeomorphic, then th...

متن کامل

An Algebraic Invariant for Substitution Tiling

We consider tilings of Euclidean spaces by polygons or polyhedra, in particular, tilings made by a substitution process, such as the Penrose tilings of the plane. We deene an isomorphism invariant related to a subgroup of rotations and compute it for various examples. We also extend our analysis to more general dynamical systems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002